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SUMMARY 

The basic theory of aeroacoustics of hornentropic fluid media 
presented in Reference 1 is applied to the problems of sound 
scattering, production, and stimulated emission. A general theory 
of scattering from low speed three-dimensional vortex flows is 
presented. Specific results are given for the horseshoe vortex 
and vortex ring. The noise of an elementary corotating vortex 
pair in various flows is calculated. It is shown that a poten- 
tial flow and shear flow can substantially increase the basic 
pair noise. Small reverse shears can annihilate vortex pairs and 
eliminate the pair noise mechanism. The pair results are used to 
explain qualitatively the operation of noise suppression devices. 
The stimulated emission of a single vortex pair and four and six 
vortex arrays is demonstrated. The results for six vortices 
illustrate how external pure tones can amplify the broadband 
noise of a jet in agreement with recent experimental evidence. 

I. INTRODUCTION 

The present report is a supplement to NASA CR 2987 (Ref. 1) 
and the reader is referred to the original report for a detailed 
discussion of the underlying concepts, theory, and initial appli- 
cation to the three basic problems of aeroacoustics. In 
Section II of this report the scattering of sound from three- 
dimensional low Mach number vortex flows is considered. Specific 
examples include the horseshoe vortex and vortex ring. The re- 
mainder of the report describes a collection of numerical experi- 
ments that illustrate how the noise of elementary vortex flows 
(in particular, the corotating pair) can be enhanced or altered 
by various mean flows and sound. The noise of a vortex pair in 
a shear flow is given particular attention. The final numerical 
examples illustrate the problem of vortex flow stimulation by an 
externally applied sound field. For a small collection of 
vortices, it is shown that a discrete tone can amplify the broad- 
band noise in agreement with experimental results (Refs. 2 and 3). 
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isentropic sound speed 

decibel 

see Eqs. (3.4) and (3.12) 

Bernoulli enthalpy, see Eq. (2.2) 

Heaviside step function 

J-1 

Bessel function 

wave vector 

Coriolis acceleration, see Eq. (3.18) 

see Figures 4.2 and 4.9 

Mach number 

overall sound pressure level 

pressure 

2 x10S5 newtons/(meter)2 

see Eqs. (3.8) and (3.13) 

I"1 

pressure autocorrelation, see Eq. (3.24) 

spectrum, see Eq. (3.22) 

scattering function, see Eq. (3.24) 

time 

period of rotation of a vortex pair in a 
shear flow, see Eq. (3.30) and Figure 3.3 

see Eqs. (2.12) and (2.13) 

see Eqs. (3.8) and (3.14) 

steady flow velocity, see Eq. (2.4) 
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two-dimensional shear flow, see Figure 3.2 

external velocity field, see Figure 3.1 

see Eq. (3.10) 

vector position of a vortex, see 
Figure 3.1 

see Eq. (3.3) 

position vectors 

rn/2n 9 see Figure 3.1 

circulation of a vorticity distribution 

total strength (circulation) of a two- 
dimensional vortex 

see Eq. (3.31) 

see Eq. (3.9) 

delta function 

see Eq. (3.9) 

see Eq. (3.31) 

density of ambient medium 

velocity potential 

radian frequency 

curl to , vorticity 

two-dimensional vorticity distribution 

SPECIAL NOTATION 

convective operator, see Eq. 2.3 

usual vector operations 

denotes vector quantity 

denotes unit vector 

3 

I ~~-- ~._.._... -... -.- 



I I 
c-1 
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absolute value of vector quantity 

denotes dot product 

denotes cross product 

denotes three-dimensional spatial Fourier 
transform 

II. THREE-DIMENSIONAL SCATTERING THEORY 

Consider the problem of sound scattering from a weak flow- 
field. The appropriate equations are (Ref. 1, p. 24) 

where 

1 D2@ --- 
a? Dt2 

$(j = 1 E 
a2 at 03 

~~7-l = div(grad$ xz,> 

D -= 
Dt 

& + 5, l grad 

(2.1) 

(2.2) 

(2.3) 

and to 
-f 
wO are the velocity and vorticity fields of a quasi- 

steady incompressible flow; i.e., 

to = curl 1 I 
z. (;;) 

4Tr I;:-':1 dG (2.4) 

The acoustic pressure is given by 

P = -P$$ - 9) 

(2.5) 

- -P, g farfield 



Assume an incident plane wave and calculate the scattered 
field; i.e., 

p = 
( 

pieil;'Z + ps e-iwt 
) 

(2.6) 

with 

kam=w (2.7) 

To lowest order (Born approximation) the scattered sound field 
satisfies the following equations: 

V2Ps + k2ps = -p,k2(3( - 2?i, l grad Qi) (2.8) 

v21 = div(grad $i x zo) (2.9) 

@i = Pi/iUPm (2.10) 

The scattered farfield is given by 

PA2 e 
ikl%l 

Ps = ~ 
4&l 

(Tc + Tm> 

with 

Tm = -2 e-ik$*$ + u,*grad @i d$ 

(2.11) 

(2.12) 

(2.13) 

The two parts of the scattered field result from the vortex core 
and potential flow mantle of the given incompressible flow. 



Because of the Biot-Savart relation (2.4), both the core and 
mantle scattering can be conveniently expressed in terms of the 
core vorticity. First, take the Fourier transform of (2.9) to 
obtain 

T, = - 
iPi 

(GxC) l 

-i(kf;-g)=$ + 
p,a,k2 

w. d? (2.14) 

where (2.6) and (2.10) have been used. 
similarly be expressed in terms of 3, ; 

The mantle scattering can 
thus, 

2Pi $ 
T,=-pai;' e-i(kx-$)=$ -f 

uo 4 
COD0 

(2.15) 

2ipi (iixk) 
= x ]&;I2 l 

,-i(kf;-"k)*G z. dj: 

where the Biot-Savart relation (2.4) has been used. The combined 
core and mantle scattered sound field is 

ikpie iklgl 
Ps = 2nacoldl 

_ (4x) (;;xC) . ;7pk;; _ j+) 
Ik;;-T:12 ' 

where 

(2.16) 

(2.17) 

is the three-dimensional Fourier transform of the vorticity field. 
The last result is particularly convenient for calculating the 
scattered sound field. Several important examples are discussed 
below. 

1) Vortex Core 

The first example is the three-dimensional analogy of the 
scattering from a vortex core (see Ref. 1, p. 24). 



and 

e-ixIIzII dz ,, 

(2.18) 

(2.19) 
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The delta function in (2.19) implies that all of the scattered 
sound is emitted in the cone defined by 

If the incident plane wave makes an angle $ with the vortex axis 
as shown in the sketch, then all of the scattered sound is emitted 
in the+cone with semi-vertex angle $ . For an axisymmetric core 
with k normal to the core axis, (2.19) reduces to 

j7b 
W = 

0 
2lT r z 6(j: l q s,(e) 

where 

/ 

co 
s C (0) = @ r Y Q (Y> Jo (2ky sin 4) dy 

0 

Also 

ps 
= ipieik)Sl Tkb(f;*X) 

%121 
cos 8 cot ; s,(e) 

(2.21) 

(2.22) 

(2.23) 

which result is the three-dimensional analog of the scattering 
formula (3.23) in Reference 1. 

2) Horseshoe Vortex 

it is 
To study the scattering of engine noise by lifting surfaces 

of interest to consider the horseshoe vortex 

to = r {-? 6(y+R) 6(z) H(x) + : 6(y- a) 6(z) H(x) 

(2.24) 
+ s 6(x) 6(z) H(R2 - y2)) 
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Observer, 

and using (2.17) 

/ \ Incident 

sound 

(2.25) 

with 

'j:=k;;-k 

(2.26) 

The last result could be used with the general formula (2.38) 
given below to study in detail the scattering of engine or air- 
frame noise by the lifting vortices of a wing. An important parameter that must be small in all of the scattering formula 
is rk/a- . 



3) Ring - Vortex 

-t w. = r X1 6 (z> 6 (r - ro> 

6l = -T sin 8 + j cos 8 

(2.27) 

(2.28) 
-t 
'1 = T cos 8 + 5 sin 8 

In the integral (2.17), suppose that the projection of x on the 
plane of the vortex ring is aligned with the x-axis in the above 
sketch. Then 

X0$ = r. T-T cos 8 (2.29) 

and 

2Tr 
e-irol~fcos 0 

(-z sine + ~COS 8) de (2.30) 
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The first term in the integral is zero and the second reduces to 
a standard Bessel function. Thus 

j7k 
w. = -2riroT 5 Jl(rox*f) 

and 

ps 
= pieiklSl rk - r.‘o (2”) (‘X’) . 3 Jl(rox.i) 

ao3 15-q x2 
(2.32) 

(2.31) 

The vectors z and j can be expressed in terms of 1 and "n 
as follows: 

(2.33) 

An inseresting special case of the foregoing result is when & 
and k are parallel. For then 

ps cos $ cot 5 Jl(kro sin$) (2.34) 

which result should be compared with Eq. (2.23). The basic 
directivity is the same as that for an infinitely long vortex 
filament, although the intensity is not singular in the forward 
scattering direction. The basic directivity is plotted in 
Figure 2.1 for a compact ring (kro << 1). Note the strong but 
nonsingular forward scattering. 
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Figure 2.1 - Scattering of plane waves by a vortex ring, 
see Eq. (2.34). 
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4) Jet or Wake (Top Hat Vorticity) 

+ w. = r Q, 6(r-ro) 

By analogy with (2.27) and (2.29) 

j7@c 
W = 

0 
-2TiroI' S(x=g> 7 J,(r,R=~> 

(2.35) 

(2.36) 

The pattern of the scattered sound is identical to that of the 
single vortex ring [see Eq. (2.32)]. This result suggests that 
a suitable distribution of fixed vortex rings would be a good 
model for calculating the scattering effect of a jet or wake. 

The scattering formula (2.16) can easily be generalized 
for an arbitrary source pressure field expressed in terms of its 
plane wave components; i.e., 

Pi(') =& 
pz (z) & (2.37) 

Then 

ikeiklS;I 
Ps = 

(24) <ii,;> (2n>4amlIfl Ik&-$:12 
l $;(k;-;) (2.38) 

a rather neat Parseval type integral for the scattered sound field. 
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III. REVIEW OF DISCRETE VORTEX NOISE THEORY 

Consider the motion of N two-dimensional point vortices of 
strength Tn with vector positions denoted by xn (see Figure 
3.1). The vortices move in the field of some arbitrary external 
flow Q&t> . The equations of motion of the vortices are 

N 

%l = 2;I-l 6(;;nm) + tr(%,t) (3.1) 
m=l 

Yn = r,/2Tr (3.2) 

+ 
Xrim = Tin - Ti, = -;rnn (3.3) 

m = +$ (3 * 4) 

The prime on the summation in (3.1) means that the term m=n is 
to be omitted. 

To calculate the farfield acoustic pressure due to the vor- 
tex motion it is necessary to calculate the second and third 
time derivatives of the vortex positions. It is convenient to 
introduce Cartesian tensor notation. Then 

N 
-i 

x 

c 
x = n Y, Dkrn + V; (3.5) 

m=l 

N 
. . i , . . . 
x = n y, Q;; &Am + t; 

m=l 

N 
. ..I 
x = n 

(3.6) 

(3.7) 
m=l 

where 
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Figure 3.1 - Two-dimensional vortices in an external flow. 
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Qij (5) = & (Eij - 2&j) 

Tijk(;) = - 5 (Eijqk i- Eik$ + $hjk 

3 = (Yl,Y2) * R = 13 

i Ai= y- Y -i = 
R " 

Aj E. .y 
1J 

0 
1 1 

(3.8) 

(3.9) 

Also 

Ov"i = Vi n tt + 2vg’jt ki + vy 2; + vn2 i jk kj xk 
n 9 , n n 

with 

v; = vi Gn t ( ) 9 
aV; +j = - 

avi 
vi =- 

n axi ' n,t at 

(3.11) 

Note further that the tensor functions (3.8) can be expressed as 
follows in terms of the two Cartesian components of their 
argument: 
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D1 = -y2/R2 , D2 = yl/R2 

Q 
11 = 

-Q 22 = 2yly2/R4 

Q 
12 - 

-Q 21 = 

(3.12) 

(3.13) 

Till = $22 = -T212 = -T221 = __ 

(3.14) 

The above formulae are particularly convenient for evaluating the 
sound field. 

For simplicity the sound field is evaluated for a compact 
array of vortices. The wave length must be much greater (factor 
of 15) than the maximum distance between pairs of vortices. In 
Reference 1, it was shown that in the compact limit all acoustic 
theories give the same answer for the radiated sound, at least 
for the spinning vortex pair. Furthermore, the most simple 
theory to apply is the formulation of Powell (Ref. 4) as devel- 
oped by Hardin (Ref. 5). For these reasons the Powell-Hardin 
formulation is used in the following discussion. 

In the Powell-Hardin theory for two-dimensional vortices, 
the three-dimensional sound field is calculated for a finite 
segment of the vortices . It is easy to show for a vortex pair 
(the proof is omitted here) that the angular pattern of the radi- 
ated sound is the same for the two- and three-dimensional sound 
calculations. Only the farfield decay rates differ; i.e., 

(3.15) 
1 

"7 3-D 

The three-dimensional calculation is much more straightforward 
and is used in the following development. 
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The farfield sound pressure is given by the formula 

pz- (3.16) 

where the asterisk means that the expression in brackets is 
evaluated at the retarded time 

t 
ik = t - /Z//am (3.17) 

Also 

1 = -tx; (3.18) 

is the Coriolis acceleration. To apply (3.16) to an array of 
two-dimensional vortices, the integration is carried out over a 
segment of length L . The integration is over the plane of the 
vortices and the farfield is evaluated in the same plane. For a 
finite collection of two-dimensional vortices 

N 

w= 
1 

Tnb (ii - dn) (3.19) 
n=l 

and the formula (3.16) reduces to 

where 

(3.20) 
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The need for second and third time derivatives of zn is evident 
from (3.20). 

To evaluate the spectrum of the farfield pressure, a finite 
record length, T , is assumed, and the Fourier transform is 
calculated by standard FFT techniques (Ref. 6). The result is 

s(W) = 1 Sn(Un> 6 (W - Wn) (3.22) 
n=-c0 

where 

WO = 27r/T , wn = nw, 

sn = 24An12 

K in(k-1)2n 
e---Xp pk 

k=l 

(3.23) 

The autocorrelation of the pressure can be calculated from the 
expression 

T 
1 R(T) = 2T p(t- -c> P (t) dt 

-T 

co 

=A;+2 1 IM2 cosn WIT 
n=l 

(3.24) 

In the numerical results, emphasis is placed on the calculation 
of the pressure from (3.20) and the spectral coefficients S, . 
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The purpose of the foregoing analysis is to provide a simple 
means of calculating the enhancement or attenuation of noise 
produced by elementary vortex configurations in various flows. 
The important problem of the acoustic excitation of vortex flows 
is also amenable to treatment with the foregoing analysis. 
Numerical results for several specific problems are discussed 
in detail in Section IV. One particular example is of sufficient 
interest to warrant further analysis; i.e., the problem of two 
vortices in a shear flow. 

Referring to Figure 3.2, the equations of motion are 

I 
x1 = Y2 If,, + 1 u' 

(3.25) 
. 
;: = 

2 Yl 521 + 1 u' J 
(’ l ;;2> 

Recall that y is used to denote the vortex strength T divided 
by 27~ . Introduce center of vorticity and relative position 
coordinates as follows: 

+ 
X= 

( YA + Y2;2 
> Iv 

+ 
r=g -ii 12 (3.26) 

Y = Yl + Y2 

Then 

(3.27) 
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acoustic 
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Figure 3.2 - Corotating vortex pair in a linear shear flow. 

Assume that the center of vorticity is initially at the origin. 
Then the first of Eqs. (3.27) implies that %t> is zero for all 
time. The relative motion of the vortex pair is expressed in 
terms of its Cartesian components as follows: 

;=vx 
r2 

s = (X,Y> , r = I$( 

(3.28) 

It is straightforward to solve for the trajectory of relative 
vortex motion and the period of rotation in the case of a closed 
orbit. The results are, for the trajectory: 
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qy2 - y6) 
r2= 2eY 

r0 (3.29) 

where r. , y. are 
tion is 

the initial conditions. The period of rota- 

eh62sin28 
- 62sin28 

(3.30) 

where 

(3.31) 

For 6 > Je or X > l/e the relative motion of the pair is 
unbounded. When 6 =l (X'= 0) the applied shear is zero and 
the orbit is circular with a period nr$/2y . 

Typical trajectories of the pair are plotted in Figure 3.3 
for various values of X . The corresponding period of rotation 
T is noted for each bound trajectory. For positive shear x > 0 
the vortices are slowed down in their orbit which becomes elon- 
gated along the y-axis. For negative shear the opposite effect 
occurs and the orbit is flattened. A complete discussion of the 
noise generated by the sheared vortex configuration is given in 
Section IV. 

IV. NUMERICAL CALCULATIONS OF VORTEX NOISE 

With the general theory of the preceding section, it is 
possible to conduct numerical experiments of various noise pro- 
ducing flows. It is not the intent of this section to attempt 
a direct simulation of complex flows as others have done (e.g., 
see Refs. 7, 8). Rather it is intended to illustrate specific 
noise enhancement mechanisms. The examples chosen are elementary, 
but the results are very illuminating and permit one to extrap- 
olate (at least qualitatively) to more complicated situations. 
The results presented are of two main types. The first set of 
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Figure 3.3 - Typical trajectories of a vortex 
pair in a linear shear flow. 
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results illustrates how the noise of an elementary vortex pair is 
changed when the pair is subjected to various external flows. 
The second set of results focuses on the problem of acoustic 
stimulation and reradiation of elementary vortex flows. 

The spinning vortex pair is considered to be the basic fluid 
flow model of an aerodynamic noise producing element. A complete 
analysis of the vortex pair was given in Reference 1. For low 
speed pairs (M c.1) the noise produced is equivalent to that of a 
single compact quadruple. The sound produced is essentially a 
pure tone with a frequency twice the rotation rate of the pair. 
The two-dimensional sound power scales as M7. With the three- 
dimensional analysis of the preceding section, the power scales 
as Ms. Even though the overall sound is quadrupole in nature, a 
detailed calculation of D7-I/Dt shows that the radiated sound is 
the end result of a more complex monopole structure (see Figure 
4.2 of Reference 1). For more energetic pairs (M >.l) the sound 
power radiated is significantly less than that calculated with 
the compact M7 scaling low (see Figure 4.3 of Reference 1). 

It is interesting to ask how the sound of a simple vortex 
pair changes with the relative strength of the two vortices. The 
answer is presented in Figure 4.1. The sum of the strengths 
(divided by 2~) of the two vortices is .4 m2/sec and the relative 
spacing is .05 m giving a radiation frequency of 50 Hz. The 
ratio Y I3 

ii 
is varied from minus one to plus one. For positive 

ratios t e pair of equal strength radiates the most noise. For 
large negative ratios, the noise can be much greater than the 
pair of equal strength. For small positive and negative ratios 
the noise is significantly less than that of the pair of equal 
strength. For the remainder of this study the equal strength 
pair is used. For most of the pair calculations the vortex 
strength is .2 m2/sec and the spacing is .05 m. The noise of the 
free pair is 31.7 db at a pure tone frequency of 50 Hz. 

The first example of vortex noise enhancement is illustrated 
in Figure 4.2. The basic vortex pair is brought into the flow- 
field of a third large vortex with Y3 = 2 m2/sec. The acoustic 
observer is 10m from the large vortex, and the ratio L/D was 
varied from 2.5 to ~0 . The acoustic results for a free and fixed 
third vortex were virtually the same. This result indicates that 
the sound is a direct result of the small pair and its nonlinear 
interaction with the potential flowfield of the large vortex. 
The overall sound power versus the ratio L/D is presented in 
Table 4.1 for positive and negative sense of rotation of the cen- 
tral vortex. For positive rotation rates (i.e., all vortices 
with the same sign), the noise is enhanced significantly for 
L/D 7 7 . For negative rotation rates the noise is reduced for. 
L/D > 5 and is then enhanced for closer spacing. The funda- 
mental frequency of the small pair is not changed substantially 
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Figure 4.1 - Noise radiated by a vortex pair of unequal 
strength (pref = 2 x lo-' N/m'). 
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Acoustic 
observer 

c 
Acoustic 

observer 

Figure 4.2 Figure 4.2 - Noise amplification by a potential flow. - Noise amplification by a potential flow. 

TABLE 4.1 - OASPL OF A COROTATING AND COUNTER-ROTATING VORTEX TABLE 4.1 - OASPL OF A COROTATING AND COUNTER-ROTATING VORTEX 
PAIR IN THE FIELD OF A THIRD LARGE VORTEX PAIR IN THE FIELD OF A THIRD LARGE VORTEX 

(yl = y2 = .2 m2/sec, y3 = +2 m2/sec) 

L/D Corotating Counter-Rotating 

co 31.7 31.7 
20.00 31.9 31.5 
10.00 32.7 31.0 

7.50 33.7 30.6 
5.00 37.9 31.7 
3.75 44.8 37.6 
2.50 60.2 50.6 

for moderate amplifications because the flowfield is irrotational. 

3 

On the other hand, the spectral content of the noise is signifi- 
cantly changed even for relatively large spacings. For example, 
in Figures 4.3 and 4.4 the trajectory, farfield pressure, and 
spectrum are presented for the ratio L/D = 10 . Note the strong 
harmonics in the spectrum as well as a very low frequency spike 
associated with the motion of the large vortex. This modulation 
can also be seen in the pressure trace. The presence of harmonics 
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Figure 4.4 - Farfield pressure and spectrum of the basic vortex pair 
in the field of a third vortex (~1 = ~2 = .2 m2/sec, 
Y3 = 2 m2/sec, L/D = 10.0). 



in the spectrum indicates that nonlinear distortion (acceleration) 
of the basic pair has occurred. The pressure trace and spectrum 
for L/D = 5 are given in Figure 4.5. The OASPL is up by 6 db 
over the free pair and the spectrum is very rich in harmonic con- 
tent. For small vortex pairs with higher frequencies similar 
amplification results are obtained. 

The foregoing results give a simple picture of the noise 
amplification that can result when turbulence is accelerated by a 
potential flow. A good practical example is the turbulence 
entrained into a vortex wake. The most highly concentrated wing 
vortices can be expected to be the most noisy during aircraft 
approach. It is expected that any technological advances that 
alleviate the wake hazard by redistributing the shed vorticity 
will also be beneficial in reducing airframe noise. Another 
practical illustration of the simple example is the free jet. 
Large discrete vortex structures emitted by a jet would entrain 
and amplify the small eddy motion of the noise producing turbu- 
lence. The noise enhancement mechanism would be alleviated by 
breaking up the larger structures as, for example, with a multi- 
tube noise suppressor. 

In Section III, the analysis of the motion of two vortices 
spinning in a shear flow was given. The noise (OASPL) direc- 
tivity for typical positive and negative shear is given in 
Table 4.2. For positive shear (opposite rotation sense to the 
vortices) the vortices are slowed down in their orbit and the 
noise is reduced. The noise pattern is essentially isotropic 
with a 3 db reduction at 90 degrees to the mean flow. For nega- 
tive shear (same rotation sense as the vortices) the noise is 
enhanced with a slight 1.5 db increase at 90 degrees to the flow. 
The shear amplification is 4 to 6 db for X = -.125 and the 
attenuation is -5 to -8 db for X = +.125 . For AI-.25 the 
amplification is 7 to 9 db. 

The pressure traces and noise spectra for h = 2.125 are 
given in Figures 4.6 and 4.7. The downward shift of the funda- 
mental frequency (-33 Hz) for A = .125 is a direct result of 
the increased orbital period. Conversely, the upward shift 
(-60 Hz) for x = -.125 is due to the reduced orbital period. 
It is seen that much of the radiated noise in the presence of 
shear is in the higher frequency components. This is due to the 
nonlinear distortion of the vortex motion that is clearly evident 
in the pressure traces and the trajectories. For much larger 
shear values, the noise spectrum becomes very rich in pure tones 
superimposed on a broadband background. Typical results for 
X = -2.5 are given in Figure 4.8. The noise is greater by some 
30 db for this value of the shear. The noise at 90 degrees to 
the flow is 4 db greater than that in the flow direction. 
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Figure 4.5 - Farfield pressure and spectrum of the basic vortex pair 
in the field of a third vortex (X1 = X2 = .2 m2/sec, 
x3 = 2 m'/sec, L/D = 5.0). 



TABLE 4.2 - OASPL DIRECTIVITY FOR SPINNING VORTEX PAIR 
IN POSITIVE AND NEGATIVE SHEAR 

1 Degrees A = .125 A = -.125 

0 27.0 db 35.7 db 
22.5 26.8 db 36.0 db 
45.0 26.0 db 36.6 db 
67.5 24.7 db 37.0 db 
90.0 24.1 db 37.2 db 

The practical significance of shear amplification and atten- 
uation of vortex noise is well known. Some of the elementary 
results thus obtained can be used to make some general inferences 
about jet noise. For example, the most obvious inference is that 
"reverse shear" is a good way to reduce the noise of a vortex 
pair and is therefore probably a good way to reduce jet noise. 
Coaxial noise suppressors are good examples of the beneficial use 
of reverse shear. The shear parameter X is essentially the 
ratio of the mean shear rotation rate to the rotation frequency 
of the spinning vortex pair. The noise of high frequency pairs 
is much less affected by mean shear than are the low frequency 
pairs. Note, however, that for X = -.25 the noise is increased 
by some 7 db. Thus, it is only the "very high" frequency pairs 
that are unaffected by shear. The inference is that mean nega- 
tive shear would enhance the noise of a given turbulent flow over 
a wide frequency band. Only the noise of the very small high 
frequency eddies (that is, small to begin with) would be unaf- 
fected. With reverse shear, vortex pairs are destroyed for 
A > l/e = .36 (see Figure 3.3). This result suggests that the 
low frequency "pair noise" mechanism can be virtually eliminated 
with a large reverse shear. 

The last example of vortex-pair noise enhancement is illus- 
trated in Figure 4.9. The rotating pair (basic noise = 31.7 db) 
is brought into the proximity of an infinite wall. The sound 
pressure level for various values of the ratios L/D is given in 
Table 4.3. The observer is on the wall far from the pair 
(R = 10 m, 0 = 0 degrees). For L/D > 2 the approximate 6 db 
noise increase is due to acoustic imaging. For closer spacings 
the noise is increased by more than 6 db because of the strong 
vortex interaction with the wall. Even for L/D = 2 the spectrum 
is changed with strong harmonics of the basic tone appearing (see 
Figure 4.10). For L/D = 1 the OASPL is greater by some 10 db. 
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Figure 4.7 - Farfield pressure and spectrum of the basic vortex pair 
in a shear flow (X = -0.125). 
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Figure 4.9 - Basic vortex pair near a plane wall. Figure 4.9 - Basic vortex pair near a plane wall. 

TABLE 4.3 - OASPL OF THE BASIC PAIR NEAR A WALL TABLE 4.3 - OASPL OF THE BASIC PAIR NEAR A WALL 

L/D OASPL 

8.0 37.7 db 
4.0 37.8 db 
2.0 38.4 db 
1.5 39.0 db 
1.0 41.2 db 

1 

The spectrum is very rich in harmonic content as evidenced in 
Figure 4.11. The directivity of the noise for L/D = 1 is 
plotted in Figure 4.12. The noise pattern is quadrupole-like 
with no noise radiated at 45 degrees to the wall. The effect of 
solid boundaries (in particular "edges") on simple vortex flows 
should be the subject of a further in-depth study of vortex 
noise. 

An attempt was made to calculate the noise of a vortex pair 
in a stagnation point flow. The goal was to illustrate by simple 
example the enhancement of jet noise due to impingement on a 
solid surface. The computational difficulty is that the vortex 
pair is convected out of the stagnation region at an exponential 
rate, It is difficult, if not impossible, to isolate the noise 
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Figure 4.12 - OASPL directivity of basic vortex pair 
near a wall (L/D = 1.0). 

due to a single rotating pair. To properly simulate the impinge- 
ment problem it appears that a statistical sample of vortices 
with influx and outflux from a finite region near the stagnation 
point must be treated. From the other examples treated in this 
section, it is easy to conjecture that the highly curved flow 
near a stagnation point will result in an enhancement of vortex 
pair noise. See the related discussion in Reference 1, page 57. 

In Reference 1, some preliminary work was done on the acous- 
tic excitation of vortex flows. The motion of a vortex pair 
excited by an incident plane wave was calculated. It was shown 
that resonant excitation of the pair occurs when the frequency of 
the incident sound is nearly tuned to the pair acoustic radiation 
frequency. It was furthermore conjectured that the nearfield 
excitation would result in additional noise in the farfield. 
Direct calculation of the noise has shown that amplification and 
attenuation can occur. 

For the basic pair (see p. 24), sound caused the vortex to 
become excited but no change in the radiated sound field resulted. 
For this case the Mach number of the vortex is about .Ol and the 
wave length is about 300 times greater than the vortex spacing. 
The acoustic coupling is very weak. On the other hand, the 
results for a vortex pair that radiates a tone of 5000 Hz with a 
vortex Mach number of about 0.1 are shown in Figures 4.13 
through 4.16. The pressure trace and spectrum of the unexcited 
pair are shown in Figure 4.13. The OASPL at 10 m is 111.7 db. 
The corresponding results for excitation frequencies 4800, 5000, 
and 5500 are shown in Figures 4.14 through 4.16. In each case, 
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Figure 4.15 - Farfield pressure and spectrum of an excited 
vortex pair (ae = 5000 Hz). 



1.00 - 0.75 
9 OS i!l 0.2s s 0.m _ - 
- 
e -0.25 -0.90 
&+- 

-1.00 I I I I I I a I 1 I I 1 a 
0.w 2.00 1.00 6.W 6.00 

WE ( 1.Eoa SC) 

gj 1.20 

8 1.w 
!!I 
2 0.60 

- 5 0.w 

5 0.10 

ifi 0.20 
0.00 1.00 2.00 3.00 

FREQUENCY t 1.m~ HZ) 
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vortex pair (ue = 5500 Hz). 



the acoustic excitation level is approximately one tenth of the 
vortex Mach number or about .Ol. 
4800 Hz (Figure 4.13), 

For an excitation frequency of 

5500 Hz (Figure 4.16) 
the noise is attenuated by 2.2 db and for 
it is amplified by 1.7 db. At 5000 Hz 

(Figure 4.15), there is virtually no change in the radiated sound. 
Another interesting feature of the excited pair is that the 
unexcited pure tone is broadened by several hundred Hz. This 
frequency modulation is evident also in the pressure traces. 
Very little upper harmonic excitation occurs and the radiated 
sound pattern remains isotropic in all cases considered. The 
isotropic radiation pattern is a little surprising since the 
incident sound is unidirectional. One might expect more sound 
at 90 degrees where the resulting Coriolis force is a maximum. 
The mechanism of coupling is somewhat more subtle and depends on 
the relative motion of the pair. 

An amplification or attenuation level of 2 db at ten percent 
excitation is significant and shows that a relatively simple 
unsteady free vortex flow is acoustically sensitive. By com- 
paring Figures 4.13 through 4.16 with the plots of Dlf/Dt in 
Reference 1, Figures 5.6, 5.8, 5.10, it is seen that the farfield 
pressure is the virtual image of the nearfield DTf/Dt . It 
should also be pointed out that no farfield effects are detected 
when the excitation frequency is substantially detuned. The 
phenomenon thus described depends on a frequency resonance, and 
the efficiency of the acoustic coupling depends on the ratio of 
wave length to vortex spacing. 

The acoustic excitation of four vortices is illustrated in 
Figures 4.17 through 4.22. 
(yl = y2 = 2 m2/sec and y 

Two pairs of corotating vortices 

The large pair has a basic3f;equency of 1430 Hz 
y4 = -.04 m2/sec) are considered. 

while the small 
pair frequency is 5430 Hz. The trajectories of'the unexcited 
motion are plotted in Figure 4.17, and the spectrum is given in 
Figure 4.18a. The first two spectral peaks correspond to the 
basic pair frequencies. 

In Figures 4.18b and 4.18c, the result of acoustic excita- 
tion at 1430 Hz is illustrated. The excitation velocity is 
ten percent of the maximum vortex velocity. The two spectra show 
the sensitivity of acoustic excitation to the phase of the source. 
At zero phase (see Figure 4.18b), the OASPL is slightly less 
(.2 db) than the unexcited case, while for the 135-degree phase 
the noise is greater by 2 db. The sensitivity to phase variation 
was noted in most cases of acoustic excitation. At the 135- 
degree phase, the noise in the second spectral peak is almost 
entirely suppressed while the low frequency tone is enhanced. 
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The results in Figure 4.19a, b, and c are also for the 135- 
degree phase with slight variations of the excitation frequency. 
The most noise enhancement occurs at 1480 Hz, and the high 
frequency noise is slightly suppressed. It was suspected earlier 
that the high frequency pair noise would generally be enhanced by 
the acoustic excitation of the low frequency pair. No evidence 
of this type of result was discovered for the four-vortex problem. 

In Figure 4.20a, b, and c the spectra are given for acoustic 
excitation at three frequencies near the second spectral peak. 
The noise is enhanced by 3 db at 5450 Hz excitation (zero phase). 
It is evident from the spectra that the noise is increased in the 
frequency range above the excitation tone. Further evidence of 
acoustic excitation is presented in Figure 4.21a through f. The 
excitation is varied from 9000 to 9350 Hz (zero phase). The 
excitation is maximum at 9050 Hz with the increased noise spread 
over the octave band above the excitation frequency. This is the 
first indication of what might be construed as broadband amplifi- 
cation by a pure tone. However, the pressure field of four 
vortices has a very tonal character with no clearly defined 
broadband. The results for six vortices is much more illumi- 
nating. 

The final set of results on acoustic excitation of vortex 
flows is for six vortices of equal strength (y = .2 m2/sec) that 
has the basic unexcited farfield spectrum shown in Figure 4.22. 
The noise has a typical broadband shape with a fairly broad spec- 
tral peak around 700 Hz. The spectrum also has a strong 200-Hz 
tone that is not very sensitive to acoustic excitation. The six- 
vortex array was scanned with a pure tone from zero to 2000 Hz. 
The excitation level is approximately ten percent of the maximum 
vortex velocity. The OASPL amplification results are given in 
Table 4.4. Amplification levels are relatively low for a tone 
below 400 Hz. The largest amplifications occur for tones just 
beyond the knee of the spectrum; i.e., 3.8 db at 750 Hz and 
6.3 db at 1000 Hz. A large amplification, 4.4 db, is also 
obtained at an excitation frequency of 2000 Hz. 

The spectra at the frequencies of largest amplification are 
given in Figures 4.23 through 4.26. For 750 and 1000 Hz it is 
seen by comparison with Figure 4.22 that the entire broadband 
spectrum is amplified. The excitation tone itself does not even 
show up in the spectrum. For an excitation frequency of 2000 Hz 
the tone is clearly evident in the spectrum and the amplification 
is over a wide band above and below the tone. These calculations 
are in qualitative agreement with recent experimental results on 
excited jet noise (Refs. 2, 3). 
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Figure 4.20 - Excited spectra of four vortices; 
phase = zero degree. 
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Figure 4.21 - High frequency excited spectra of four vortices; 
phase = zero degree (continued on next page). 
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Figure 4.21 - High frequency excited spectra of four vortices; 
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TABLE 4.4 - ACOUSTIC EXCITATION OF SIX VORTICES 

(EXCITATION 2 10% OF MAXIMUM VORTEX VELOCITY) 

we OASPL 
(db) 

Amplification 
(db) 

0 72.9 0.0 
100 73.1 0.2 
200 74.1 1.2 
300 74.4 1.5 
400 75.1 2.2 
412 75.5 2.6 
425 74.6 1.7 
500 73.4 0.5 
600 73.2 0.3 
700 73.6 0.7 
750 76.7 3.8 
775 76.8 3.9 
800 75.9 3.0 
900 73.5 0.6 

1000 79.2 6.3 
1200 74.3 1.4 
1600 76.0 3.1 
2000 77.3 4.4 

Comments 

Unexcited Array 

Spectrum in Figure 4.23 

Spectrum in F 'igure 4.24 

Spectrum in Figure 4.25 

Spectrum in Figure 4.26 
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Figure 4.23 - Spectrum of excited six vortex array; 
w e = 412 Hz. 
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Figure 4.24 - Spectrum of excited six vortex array; 
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Figure 4.25 - Spectrum of excited six vortex array; 
w e = 1000 Hz. 
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V. CONCLUSION AND RECOMMENDATIONS 

The general theory developed in Reference 1 has been further 
applied to the three basic problems of aeroacoustics; i.e., 

1) How is sound processed by a "primary" flow? 

2) How is sound produced by a "primary" flow? 

3) How does sound affect the primary flow? 

The main conclusions are summarized below. 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

A general theory of sound scattering from low Mach 
number three-dimensional vortex flows is presented. 
The sound scattered from a vortex is proportional to 
the parameter rk/am where r is the circulation, 
k the wave number, and aoo is the speed of sound. 

An explicit formula and numerical calculation for 
plane wave scattering from a vortex ring is given. 
The forward scattering is much greater than the 
backscatter, but it is not singular as in the two- 
dimensional case. 

The sound produced by a corotating vortex pair in 
various mean flows is calculated. A potential flow 
enhances the sound produced by the pair with little 
change in the fundamental frequency. Overtones in 
the spectrum are produced. 

A shear flow rotating with the vortex pair increases 
the sound, shifts the basic frequency upward, and 
creates overtones in the spectrum. The radiation 
pattern is changed only slightly from isotropic. 

A reverse shear flow reduces the pair noise, and for 
a sufficiently large shear the pair is annihilated. 
Reverse shear is a practical way of reducing the 
vortex pair noise mechanism. 

A vortex pair near a wall (within one or two vortex 
spacings) radiates more noise than the corresponding 
free pair with its acoustic image in the wall. The 
radiation pattern becomes quadrupole in appearance 
with no noise radiated at 45 degrees to the wall. 

Numerous calculations of vortex flow stimulation by 
externally applied sound are presented. A basic pair 
can be excited or attenuated by external sound near 
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resonance with the pair. The sound radiated by the 
pair is correspondingly enhanced or decreased. The 
mechanism of stimulated emission becomes more efficient 
as the Mach number of the pair is increased. 

8) A collection of six vortices has a typical broadband 
noise spectrum. The array of vortices was ensonified 
with a pure tone over a wide band of frequencies. For 
frequencies near the knee of the spectrum the entire 
broadband noise spectrum was increased substantially. 
The amplification depends crucially on the nonlinear 
coupling between the vortices. 

9) The calculations of stimulated emission of vortex noise 
are in quantitative agreement with experimental results 
(Refs. 2 and 3). 
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